If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4s^2-16s=16
We move all terms to the left:
4s^2-16s-(16)=0
a = 4; b = -16; c = -16;
Δ = b2-4ac
Δ = -162-4·4·(-16)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{2}}{2*4}=\frac{16-16\sqrt{2}}{8} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{2}}{2*4}=\frac{16+16\sqrt{2}}{8} $
| (12-2x)(10-2x)=x | | -4(3x-2)+4x=2(x+7) | | 7x−17x=20 | | -26-2x=-4(1+7x)+4x | | 3x-2+5x=16 | | x(+8)=30 | | 4x=2x-9=-3(5-x) | | 5x+5x=67 | | r-8=-19 | | 8x+20+10x-7+x=180 | | x/2.8-4.9=(-7.11) | | –10b–19–20b=–19 | | r-7÷6=-5 | | 7=d/5+1 | | (11x-26)+(9x+46)=180 | | 5c-10=2c+56 | | 5(x-2)+3x=6(x-3) | | (11y+50=) | | 5(2d+4)=34 | | (24y-45=) | | 12-4x=-10-2x | | 15x-9=12x+12 | | 2114(z+3)=14z+2 | | (9x-6)+69=180-(20x-3) | | 5x^2+8x+21=0 | | 39–8n=-8(3+4n)+3n | | (20y-45=) | | -2+10x–(8x–5)=-7+2x | | -2x+12=2×-48 | | 7x+-3=4= | | 21-7a=14 | | 7(n-1)=7n-1 |